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INTRODUCTION: TOPICS AND FOCUS 
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INTRODUCTION: NON-DESTRUCTIVE TESTING 

 Non-destructive testing (NDT) of metal-based structures can exploit different 
imaging methods, mainly: 
 X-ray Radiography (single projection) and Computer Tomography (CT, multi-

projection)  
 Guided Ultrasonic Waves (GUW) and Ultrasonic Sonography 

 Detection of hidden damages, defects, and impurities (e.g., pores) is still a 
challenge! 
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Primary Goal. Automated Damage, Defect, and Impurity Detection in materials and 
structures including composites using single X-ray projection images (from Low-Q/Mid-Q 
devices) and data-driven feature marking models (Convolutional Neural Networks). 



INTRODUCTION: EXPERIMENTS AND GOALS 
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Different specimens, structure geometries, materials, and defects are considered 
in this work! They pose different coincidence between material and image 
features. 

1. Homogeneous Aluminum Die Casting Plates (150x40 mm) with pore defects  

2. Composite Fibre Metal Laminate plates (FML, aluminum and PREG layers, 50 x 
50 mm) with impact damages posing layer delaminations, deformation, cracks, 
and kissing bond defects. 

Secondary Goal. Migration from laboratory (High-Q/Mid-Q) to in-field (Low-Q) 
measuring techniques and devices. 



INTRODUCTION: AUTOMATED FEATURE DETECTION 
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 Automated feature detection and marking in measuring images can occur on different levels: 
 Region-of-Interest Search 
 Feature marking and Maps 
 Damage and defect classification 
 Damage and defect localization 
 Global statistical aggregates (e.g., pore density, distribution) 

 Either classical numerical and model-based algorithms (e.g., edge detection using a Soebel filter or Canny 
detectors) or data-driven models are used for feature marking („Machine Learning“) 

Data-driven models require data! Data must contain a sufficient statistical variance 
and distribution of features to be detected. That‘s the first issue with most 
engineering data! Additionally, supervised data modelling requires accurately labelled 
strong feature examples, commonly not available, and being the second issue and 
downfall in data-driven modelling. 
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PRINCIPLE CONCEPT (1) : X-RAY RADIOGRAPHY 
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PRINCIPLE CONCEPT (2): X-RAY COMPUTER TOMOGRAPHY 
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ADVANCED CONCEPT 
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DEVICE CLASSES 
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High-Q Mid-Q Low-Q 

Single Projection 

Mult-Projection (Rotation) 

X-ray Tube Focal Diameter 5μm 0.8mm 0.8mm 

X-ray Voltage/Current -120 kV/2 mA -120 kV/10 mA -70 kV/1 mA 

Detector 
2000x2000 

20 μm 
Screen / Microsc. 

1000x1000 
200 μm 

Direct Sci. 

2000x1000 
3/40 μm 

Screen/Imaging 

Digital Resolution [Bits] 16 16 12 

Sampling Time 500 ms-10 s 10 ms-1 s 5 s 

Distance Object/Source 5-10 cm 10-50 cm 10-30 cm 

Costs 1000 k€ (Zeiss) 500 k€ (IFAM) 1 k€ (Bosse) 



TAXONOMY 
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TAXONOMY 
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WORKFLOW 
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SPECIMENS 
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DATA VARIANCE: THE FIRST CHALLENGE 
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In this work a semantic pixel classifier is used for feature marking. From the model point of 
view, each pixel (and neighbour pixels) of an X-ray image or volex of a CT image stack is a 
sample instance!  



METHODS AND ALGORITHMS 

 Parametric 3D CAD modelling using automated model code generators, Monte Carlo 
simulation, and openSCAD 

 X-ray simulation using own simulation software based on proven and accurate 
gvxr/gVirtualXray GPU library 

 3D CT reconstruction with Filtered Back Projection (using sine filters) 

 Convolutional Neural Networks in different flavors (Damage/Defect Classifier) 

 Anomaly detectors applied to images and CT volume data 
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X-RAY SIMULATION 

 Input: Polygon mesh grid (STL, Stereolithography file format) model 
 An STL file describes a raw, unstructured triangulated surface 

 Decomposition of multi-material structures in single density parts (finally merged in simulator) 

 3D Model design: Constructive Solid Geometry (CSG) 

 Output: X-ray intensity image with a specific detector resolution (number of pixels) and pixel size, 
floating point or integer data format (at least 16 Bits) 

 Spatial source, object, and detector geometries can be fully parametrized including rotatated planes 

 Core software library: gvxr / gVirtualXray using GPU computations and the OpenGL Shading 
Language (faster than 1ms / image)  
 https://gvirtualxray.fpvidal.net/ 

 Based on the Beer-Lambert law to compute the absorption of light (i.e. photons) by 3D objects (here polygon 
meshes). 
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https://gvirtualxray.fpvidal.net/


X-RAY SIMULATION: CAD MODEL USING CSG 
rotate ([90,90,90]) 

difference () { 

  rotate ([90,0,0]) cube([100,4,40],true); 

  union () { 

    translate([3.17,6.14,0.67])  

      rotate ([0,0,-1.43])  

      scale([1.15,1.12,0.31])  

      sphere(r=0.5,$fn=20); 

    translate([-16.66,-4.05,0.39])  

       rotate ([0,0,40.14])  

       scale([0.89,2.21,1.46])  

       sphere(r=0.5,$fn=20); 

… 

  } 

} 
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X-RAY SIMULATION 

 C++ simulation library 
gvxr/gVirtualXray1 

 Integrated in own simulator program 
XraySim: 
https://github.com/bslab/xraysim 

 GPU/OpenGL Ray tracing using Beer-
Lambert law  

 Absorption along direct transmission 
path from source to detector – no 
scattering and reflection! 

21 

1 Simulation of X-ray projections on GPU: Benchmarking gVirtualXray with clinically realistic phantoms, Jamie Lea Pointon, Tianci Wen, Jenna Tugwell-Allsup, 
Aaron Sújar, Jean Michel Létang, and Franck Patrick Vidal Computer Methods and Programs in Biomedicine, 2023.…. 
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X-RAY SIMULATION: NOISE 
We have different noise sources that have 
an impact on image quality and the 
predictions of data-driven models (noise 
sensitive FP artifacts): 

 Gaussian Noise (Electronics, Detector) 

 Poisson Noise (Quantum Effects in 
Detector and Scintillator) 

 Positive Impulse Noise (Pop-corn noise 
due to X-ray radiation, Detector) 

 Scattering Noise (Material) 

 Scintillator Noise (Static Inhom. Intensity) 
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SEMANTIC CNN PIXEL CLASSIFIER 

 Input: A sub-window of an X-ray image 
 Output: The object class to which the 

central pixel of the window belongs 
 The CNN classifier is applied to all 

pixels of an input images and 
produces an equally sized feature 
marking output image 

 Point clustering (e.g., using DBSCAN) 
can be used to extract list of geometric 
objects (pores, damages, …) 

 Supervised positive training 
(classification of known features 
classes)  
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DAMAGE DETECTION IN FML CT DATA 

 Goal: Find (or mark) damages (deformations, cracks, delaminations) in 3D CT volumes 

 Method: Z-Slicing of 3D CT volumes and application of a data-driven feature detector to z-profiled slices  
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DAMAGE DETECTION: POSITIVE VS. NEGATIVE TRAINING 

Negative Training 
The predictor model is trained with well known defects and damages (classifier). 
Suitable if there is a solid reference data set and an already existing knowledge base. 

 

Positive Training 
The predictor model is trained with the base-line reference without defects and 
damages (anomaly detector). Suitable to cover defects and damages with known and 
unknown characteristics. 
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ANOMALY DETECTION IN FML CT DATA: NEGATIVE TRAIN. 

 An anomaly detector is build with a Autoencoder, either using a CNN or a LSTM-ANN 
 The AE is trained with z-profile slices without defects or damages (base-line, ground truth data) 
 The AE „learns“ the z-profile structure of the FML plates and outputs a simplified representation (neg. Train.)  
 If there is a damage/defect, the AE is not able to reconstruct the base-line structure, and an error occurs 
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ANOMALY DETECTION IN FML CT DATA: NEGATIVE TRAIN. 

 A CNN is trained with damaged z-profiles to classify damaged and undamged z-profile slices 
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ANOMALY DETECTION IN FML CT DATA: SIMULATION 

 A typical sample set contains less than 10 different specimens, each with a distinct 
and unique impact damage (and base-line = no damage) 

 Data augmentation by simulation is required to increase feature and data 
variance! 

 But in contrast to mechanical pore modeling in homogeneous materials, modeling of 
impact damages in FML is much more complicated reaching high accuracy (wrt. real 
structures and images)   

 Hand-made layer boundary and damage polygon-marking using image tools → Time 
consuming! 

Functional approximation → Parametrizable 3D CAD model → X-ray simulation 
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ANOMALY DETECTION IN FML CT DATA: SIMULATION 
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FUSION OF REAL AND SYNTHETIC X-RAY IMAGES 
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 Modeling of specific material structures and image patterns can be a challenge: 
 Fibre Materials (Irregular, unknown geometric placement, clusters) 

 Non-Gaussian Correlated X-ray Noise (e.g., depends on X-ray tube & HV Supply) 

 Solution: Modeling of target features (damages) and homogeneous materials + 
Overlay of real measured images (without defects, base-line) 

X-ray 
Simulation 

X-ray 
Measurement 

Defects 
Damages 

Base-line 
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RESULTS 

 Convolutional Neural Networks applied to X-ray radiography images of 
Aluminum die casting plates 

 Anomaly and damage detectors (CNN and LSTM-AE) applied to X-ray CT 
volume data 
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 Left: Volume projection of reconstructed CT images with data from a Mid-Q device (400/800 projections, rec. with classical fbp alg.) 

 Right: Single projection X-ray radiography images from same Mid-Q device  
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COMPARISON RECONSTRUCTED 3D CT (MID-Q) AND  
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 Left: Single projection  X-ray radiography images from a MidQ device (M=2, pixel size 200μm 1000x1000 pixels, cropped) 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image (MidQ), trained with real images  [8-4] 
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MID-Q RADIOGRAPHY AND CNN PORE FEATURE MARKING (R) 
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 Left: Single projection  X-ray radiography images from a MidQ device (M=2, pixel size 200μm 1000x1000 pixels, cropped) 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image (MidQ), trained with synthetic images  [8-8-4] 
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MID-Q RADIOGRAPHY AND CNN PORE FEATURE MARKING (S) 

Threshold 
Discriminator  

0.8 

Large FOV! 
150x150 mm 

AluDC #4 AluDC #12 Training: 
Synthetic 
Images 

Prediction:
Real 

Images 



 Left: Single projection  X-ray radiography images from an Imaging LowQ device (M=1, eff. pixel size 40μm 1920x1080 pixels) 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image (LowQ), trained with synthetic images  [8-8-4] 
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LOW-Q RADIOGRAPHY AND CNN PORE FEATURE MARKING (S) 
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 Left: Single projection  X-ray radiography images from an Imaging LowQ device // Rolled aluminum plate (d = 2 mm) 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image (LowQ), trained with synthetic images  [8-8-4] 
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LOW-Q RADIOGRAPHY AND CNN PORE FEATURE MARKING (S) 
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 Left: Single projection  X-ray radiography images from XraySim (M=2, pixel size 150μm 1000x1000 pixels, cropped) // Synthetic Plate 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image. 3 Layers [8-8-4] 
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SIMULATED RADIOGRAPHY AND  
CNN PORE FEATURE MARKING (GROUND TRUTH) 
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 Left: Single projection  X-ray radiography images from XraySim (M=2, pixel size 150μm 1000x1000 pixels, cropped) // Synthetic Plate 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image [8-8-4] 
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SIMULATED RADIOGRAPHY AND  
CNN PORE FEATURE MARKING (GROUND TRUTH) 
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FML HOST MATERIAL AND DAMAGE MODELING 
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 Still work under progress  

 Even the host material 
composite structure is a 
challenge 

 Damages and Deformations 
must preserve material mass 
and volume!  

 ROI and composite layer 
boundary marking with semi-
automated tracker (and 
Canny edge detection) 
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ANOMALY DETECTION IN FML CT DATA (POSITIVE TRAIN.) 
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 A CNN  is used to detect anomalies in a CT volume (feature marking of damage candidates)  // Data from HighQ device 

 Specimen: FML plate with different damages: A: foil pseudo defect,, B: Resin washout B, C: Baseline, D: Layer delamination: 

1 Chirag Shah, Stefan Bosse, and Axel von Hehl. Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics, Materials 15 (MDPI), no. 13 (2022): 4645…. 



ANOMALY DETECTION IN FML CT DATA (NEGATIVE TRAIN.) 

41 

 A LSTM Autoencoder is used as an anomaly detector. Shown is the feature marking  of the AE (top view of the X.ray CT volume) 

 Specimen: FML plate with impact damage. A-E: Different AE model configurations and trainings // Data from HighQ device 
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CONCLUSIONS 

Data 

 Single- and Multi-Proj. X-ray 
Images 

 Data and feature variance is 
always limited! 

 Supervised Learning: Hand-
made labeling is a challenge 
and inaccurate  
 Relation between image and 

target features can be very low 
(contrast) 

 CT data can not be used directly 
for labeling due to geometrical 
distortions (wrt. single projection 
input data) 

Methods 

 Convolutional Neural Networks 
for pore and damage feature 
marling (data-driven negative 
training) and LSTM anomaly 
detectors (positive training)  

 X-ray simulation based on Beer-
Lambert law and multi-material 
polygon mesh models 

 Monte Carlo simulation of 
materials with defects and damages 
(openSCAD, Constructive Solid 
Geometry) 

 Measuring devices: Low-Q, Mid-
Q, High-Q 

Results 

 A pure data-driven feature marking 
model (semantic image pixel 
classifier) trained with synthetic 
images only can be applied to real 
images 

 The semantic pixel feature marling 
model is capable to highlight low-
contrast features (e.g., hidden 
pores) 

 X-ray noise has significant impact 
on feature prediction results 

 Accurate and representative 
training examples (labelling, 
simulation models) are a pre-
requisite for robust data-driven 
models and a challenge! 
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PORE INSPECTION AND CHARACTERISATION BY CT 
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It is a challenge to estimate pore shapes 
(geometry, size), density, spatial 
distribution, and to distinguish 
reconstructed pores from image artifcats 
and noise! 

 Manual measuring of shape parameters of selected 
pores (e.g., using ImageJ analysis software) with 
ellipse approximation 

 Automated pore analysis by point clustering 
methods and ellipsoid approximation 



PORE INSPECTION AND CHARACTERISATION BY CT 

45 

It is a challenge to estimate pore shapes 
(geometry, size), density, spatial 
distribution, and to distinguish 
reconstructed pores from image artifcats 
and noise! 

 Manual measuring of shape parameters of selected 
pores (e.g., using ImageJ analysis software) with 
ellipse approximation 

 Automated pore analysis by point clustering 
methods and ellipsoid approximation 
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